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1 Introduction

In this paper, we discuss a method of characterizing motor, gearing, and wheel (“drive”) systems on
FRC robots. We present data and analysis that strongly suggest that the behavior of FRC drive systems
is quite rigorously linear, and that several commonly-used techniques for drive characterization in FRC
are ill-founded. We further discuss potential theoretical implications for FRC drivetrain modeling, and
practical applications for determining accurate control-loop feedforwards from characterization data.

For the first part of this paper, we will discuss the theoretical behavior of a robot drive under
several simplifying assumptions, including, importantly, the absence of friction. We will then discuss
the violations of these assumptions in actual FRC robot drives, appropriate modifications to deal with
these violations, and finally conclude with practical instructions for implementing the resulting drive
characterization in robot control.

2 Theoretical Foundations

2.1 The Voltage-Balance Equation

The voltage balance equation1 for a permanent-magnet DC motor is given by

Vapp = kω + IR (1)

where Vapp is the voltage applied across the motor, k is some constant, ω is the angular velocity of the
rotor, I is the current through the motor windings, and R is the resistance across the motor windings.
One can think of this equation as “partitioning” the applied voltage to the motor in two:

Vapp = Vemf + Vwindings (2)

where
Vemf = kω (3)

and
Vwindings = IR (4)

1All quantities in this paper have SI units, with the exception of distance (and all derived quantities such as velocity,
acceleration, etc) which is given in units of feet for sake of familiarity to most FRC teams.
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Here, Vemf is the so-called “back-EMF,” and can be thought of as the result of the rotor’s motion
causing the DC motor to act as a generator. Our other term, Vwindings, corresponds to the voltage
drop across the motor windings.

We can further think of the Vemf as the voltage required to keep the motor spinning at a desired
constant speed in the absence of any load, or, in other words, the “portion of voltage” corresponding to
the motor’s velocity. Similarly, we can think of Vwindings as the “portion of voltage” corresponding to
the motor’s output torque, since I is proportional to the strength of the field generated by the motor
windings, and thus to the torque generated by the motor.

We now consider the implications for a robot drive. Let us consider a hypothetical “tank-drive”
robot driven by one motor per side of the drive, with constant gearing (the case of multiple motors per
side is fundamentally equivalent, so long as the motors are geared together; we can consider the group
of motors as a single motor). Let us further assume that the wheels do not “slip” on the ground, and
that each side of the robot moves in unison.

By observing that, under these conditions, the rotor speed ω is proportional to robot velocity, and
the output torque is proportional to robot acceleration, we can (by judiciously “absorbing” constants)
rewrite our earlier equations in terms of robot velocity and acceleration:

Vemf = kv · velocity (5)

and
Vwindings = ka · acceleration (6)

thus, we obtain
Vapp = kv · velocity + ka · acceleration (7)

A rather important point is now immediately apparent: the voltage applied to our robot’s drive
can be partitioned into a portion corresponding to the robot’s velocity, and a portion corresponding
to the robot’s acceleration. Characterizing the behavior of a robot drive, then, becomes a matter of
determining the values of our two constants, kv and ka.

2.2 Theoretical Determination of kv and ka

In order to get a clearer sense for the meanings of our constants, kv and ka, we now consider two
hypothetical situations.

Firstly, we consider the case of a robot at steady-state, with full voltage Vmax applied to the motors.
Since the robot is at steady state, we know that acceleration is zero, and all of the applied voltage
must go towards maintaining the robot velocity (or, in other words, counteracting the “back-EMF”),
corresponding to the fastest possible robot velocity, which we will call velocitymax. Thus we have

Vmax = kv · velocitymax (8)

and

kv =
Vmax

velocitymax

(9)

Similarly, we consider the case of a robot at rest, again with full voltage Vmax applied to the drive
motors. Since the robot is at rest, we know that velocity is zero, and thus all of the applied voltage
goes towards accelerating the robot. This is the condition of the robot with the motors at stall, and
corresponds to the fastest possible robot acceleration, which we will call accelerationmax. Thus we
have

Vmax = ka · accelerationmax (10)

and

ka =
Vmax

accelerationmax
(11)
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We now know enough to obtain a rough theoretical guess for the values of kv and ka, as Vmax is
known and velocitymax and accelerationmax can be calculated from the motor free-speed and stall-
torque, respectively, in relatively-straightforward fashion: Let ωfree be the free speed of the motor,
τstall be the stall torque of the motor, n be the total number of drive motors, mrobot be the mass of
the robot, and dwheels be the diameter of the robot’s wheels, and rgearing be the total gear reduction
between the motors and the wheels. Then, it is easy to see that

velocitymax =
ωfree · π · dwheels

rgearing
(12)

and, neglecting the effect of moment-of-inertia of the drivetrain,

accelerationmax =
2 · n · τstall · rgearing
dwheels ·mrobot

(13)

However, while these formulations for kv and ka are useful in a theoretical sense, they are difficult
to employ in practice, mainly because both velocitymax and accelerationmax are somewhat difficult
to empirically measure: due to various effects such as friction, wheel slip, and battery ”voltage sag,”
these quantities do not necessarily correspond to the measured maximum robot velocity or acceleration.
Additionally, as we will see in the next section, a small modification must be made to equation 7 when
the effect of friction is considered.

3 Drive Behavior in Practice

Our analysis thus far provides a good foundation for the characterization of FRC robot drives. However,
as noted, several simplifying assumptions were made, including: straight robot motion, lack of wheel
slip, and, most importantly, the absence of friction.

3.1 Accounting for Friction

Practical application of the above equations is rendered somewhat more complicated by considerations
of reality. In particular, the presence of friction proves problematic, and demands special consideration.
However, our testing reveals that the frictional effects present in a typical FRC drive are overwhelmingly
linear, and thus accurately accounting for friction is surprisingly simple.

The reader is likely familiar with some of the effects of friction on robot drives. For example,
a max robot speed calculated directly from the robot’s free-speed with no correction for frictional
losses is well-known to be unreachable in practice. Likewise, for those teams that have measured
robot acceleration, it is very clear that the “theoretical” maximum acceleration as calculated from the
robot’s stall torque is far greater than anything that can actually be achieved. The use of frictional
“fudge-factors” to account for these issues is commonplace, usually in the form of a simple constant
multiplier (a common value is in the neighborhood of .8) applied to to all relevant quantities. As we
will demonstrate later in the paper, such naive approaches are not correct in all cases, and can lead to
poor characterization of robot behavior.

To gain insight into the actual effects of friction on robot, we conducted a number of tests on our
test robot. The test robot in question weighed approximately 110 lbs, and due to some notable issues
(including minor dragging of the belly-pan on the ground and an old, heavily-used drivetrain dating
back to 2014) had fairly substantial frictional losses in the drive train. Our test robot had a 6-CIM
West-Coast drive, composed of WCP single-speed 3-CIM gearboxes driving 4” Colson wheels, worn
to 3.8” effective diameter, with a gear ratio of 6.1:1, with power transmitted to the outer wheels via
9mm-wide 5mm-pitch HTD belts. The robot was driven on a carpet highly similar to that used on
FRC fields.
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3.2 The Steady-State Voltage-Speed Curve and Determination of kv

The equations for drive behavior in the absence of friction describe a linear - in fact, proportional -
steady-state voltage-speed curve. Suspecting that friction may result in a nonlinear real-world voltage-
speed curve, a test was conducted in which the test robot was run to steady-state speed at an array
of positive applied voltages. The resulting steady-state speed was measured by drive encoders. To
account for “voltage sag” from the battery and robot wiring, the actual voltage applied to the motors
was directly measured via functionality offered by its Talon SRX motor controllers. The resulting
voltage-speed curve is shown below (for the sake of brevity, only the curve for the left side of the
robot’s drive is presented - as the robot did not track entirely straight, the curve for the right side of
the drive differed slightly):

Figure 1: The steady-state velocity versus voltage curve for the left side of the test robot

We can see several important features from this graph. Firstly, and most importantly, the steady-
state voltage-speed curve is extremely linear, indicating that steady-state frictional effects are linear
with robot velocity. Accordingly, the steady-state frictional effects can be partitioned into two parts:
constant friction, and friction proportional to velocity.

Secondly, we note that the purely proportional relationship between voltage and velocity suggested
by equation 7 is quite obviously inaccurate; the real-world voltage-speed curve has a nonzero intercept.
This is unsurprising - it is well-known that FRC robot drives have a voltage “dead-zone” around zero
within which the torque generated by the motors is insufficient to overcome frictional losses in the
drive.

The presence of a nonzero intercept in the steady-state voltage-speed curve, combined with the
verified linearity of the behavior, suggests a simple amendment to equation 7:

Vapp = kv · velocity + ka · acceleration + Vintercept (14)

Here, Vintercept is the x-intercept of the voltage-speed curve above; for our data, the value is
∼1.26 V. One can think of Vintercept as the voltage required to generate enough torque to overcome
the constant steady-state frictional effects.

Observe that this test offers us a simple empirical determination of kv: we can take kv to be the
inverse of the slope of the voltage-speed curve. Doing this “absorbs” any steady-state frictional effects
proportional to velocity into the value of kv. Given the observed linearity of the robot behavior, this
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together with the addition of the intercept accurately accounts for nearly all steady-state frictional
effects.

We can further compare our empirical value of kv to the “theoretical” value calculated from the
motor’s free speed. Surprisingly, our measured value for this test is extremely close to the theoretical
value; we obtained an empirical kv of ∼0.81 V s ft−1, as opposed to a theoretical value of ∼0.83 V s ft−1.
As CIM free speeds are only guaranteed to ±10%, the difference is probably not significant.

It is interesting to consider the close agreement between the empirical and theoretical values of kv
despite the common knowledge that FRC robots do not actually reach their “theoretical” top speeds.
There are two main reasons for this. Firstly, it is impossible to ever actually apply maximum battery
voltage to the motors, due to “voltage sag” caused by the internal resistance of the battery. This
can be seen in figure 1; despite our commanded test voltages ranging all the way up to the ostensible
maximum of 12 V, the maximum voltage actually measured reaching the motors was ∼9.5 V. Secondly,
the voltage actually available to cause steady-state robot speed can be seen from equation 14 to be
Vapp − Vintercept; thus, additional top speed is lost to steady-state friction. Note, however, that the
steady-state frictional losses are overwhelmingly constant, not proportional, since the empirical value
of kv agrees so closely with theory: we can see from this that the common approach of multiplying
the theoretical top-speed by a corrective frictional “fudge-factor” to obtain an estimated practical
top-speed is incorrect.

3.3 Dynamic Robot Movement and Determination of ka

Our real-world analysis thus far has accounted for steady-state robot behavior, and corresponding
provided values for Vintercept and kv. It remains to investigate dynamic robot behavior - that is, what
the robot does when it is changing speeds - and determine a value for ka.

From equation 14, we can see:

ka · acceleration = vapp − (kv · velocity + Vintercept) (15)

This naturally suggests a procedure for the determination of ka, given our earlier empirically-
determined values for kv and Vintercept. We can think of vapp − (kv · velocity + Vintercept) as the
“portion of voltage” causing robot acceleration. Our equation again tells us that, like the steady-state
voltage-speed curve, in the absence of friction, the relationship between this and robot acceleration
should be linear, with slope ka.

As in the previous section, we suspected that the real-world result may be nonlinear. In order to
test this, we ran the test robot with a constant applied voltage (60% of max voltage was chosen; we
did not want to slip the wheels, which would have invalidated the test). As in previous tests, voltage
applied to the motors and drive velocity were both logged. Acceleration was calculated as the slope
of the secant line across four time-slices of velocity data; this was found to be necessary to reduce the
very large amount of noise. Acceleration measurements were also made with an accelerometer (NavX
MXP), and again found to be too noisy. The collected data were also “trimmed” to remove an initial
period of “accceleration ramping” caused by motor inductance, which we do not attempt to describe
in our analysis. The resulting plot of acceleration versus “acceleration-causing voltage” (as described
earlier, given by vapp− (kv ·velocity +Vintercept) with the values of kv and vintercept obtained from our
steady-state test) is shown below, along with the corresponding plot for robot velocity versus time:
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Figure 2: The acceleration versus voltage curve for a robot, measured via on-ground step voltage tests.

Figure 3: Velocity of robot versus time during test.

Unsurprisingly, the curve is much noisier 2; however, no serious nonlinearity seems to be present.
Additionally, the intercept of the regression line is very nearly zero, corresponding to approximately
0.08 V. Were our steady-state characterization perfect, this intercept ought to be zero, so the small
value is reassuring and indicates agreement between the steady-state and dynamic tests. Additional
tests at different voltages yielded similar results. 3

As in the previous test, we can obtain an empirical value for ka by simply taking the reciprocal of

2A close observation of the velocity-versus-time plot shows that the data are not quite evenly-spaced in time (in fact,
some values of time have two data points!); this is due to a combination of inconsistent roborio loop execution time and
the use of a parallel logging routine, and logging time from a global robot clock value that is only updated upon main
loop execution. While mildly inconvenient, it does not seriously impact the accuracy of the data.

3Current was also logged during the acceleration tests, and was found (as predicted by equation 7) to be essentially
proportional to Vapp − kv · velocity, with a linear regression yielding an r2 of ∼ .993 and an intercept of ∼0.3 A
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the slope of the regression line. For the data in the plot above, this yields a value of ∼0.21 V s2 ft−1.
We can again compute a theoretical value for ka, as well, this time from the stall torque; this yields a
value of ∼0.1 V s2 ft−1.

Here, unlike in the steady-state test, we have a significant discrepancy between the empirically-
measured value and the theoretically-calculated one - more than a factor of two! To understand the
cause of this discrepancy, remember that we are “absorbing” proportional friction effects into our
measured values for kv and ka. In the steady-state case, there appear to be few friction effects that
vary significantly with robot velocity. However, the dynamic case is not analogous: friction between
the gears will clearly vary with acceleration, as the normal force between gear teeth is proportional
to the output torque of the motors, and thus to robot acceleration. Thus, the amount by which our
empirical value of ka is inflated from the theoretical is representative of the torsional loss from the
motors to the wheels as a result of frictional effects that vary with load. From these data, it appears
that the drive of our test robot loses over half of its motor torque to such losses.

As we can see from the linearity of our plot, these effects are (thankfully) quite linear, and thus we
do not need to introduce any further changes to equation 14 to account for them.

On a final note, the astute reader may have noticed that running two separate linear regressions
is somewhat unnecessary - we may simply combine the results of our tests and run the multivariate
linear regression suggested by equation 14 to obtain values for kv, ka, and Vintercept all at once. Doing
this yields similar results to running sequential univariate linear regressions as was done above 4.

4 Practical Implementation

We now, finally, discuss what a FRC team might want to do with the information presented above,
and how to do it.

4.1 Using the Equations: Open-Loop Control and Feedforward

With our empirical determinations of the unknown constants, equation 14 can now be implemented
for actual robot control. In particular, equation 14 immediately gives us a very good approximation
of the voltage we must apply to our robot’s motors to achieve a desired velocity and acceleration.

Most teams are likely more interested in achieving velocities rather than accelerations. In this
case, the acceleration term of equation 14 can simply be omitted. This yields an equation similar to
most open-loop control; the major difference introduced by our new knowledge is the importance of
Vintercept. Any attempt to control robot velocity which omits Vintercept is akin to attempting to model
the curve in figure 1 with a line constrained to pass through the origin. Thus, the standard practice
of simply sending motors a signal proportional to the desired velocity is clearly flawed.

To correct for this, we simply need to add Vintercept to our voltage outputs. However, care must be
taken when implementing this. The sign of Vintercept clearly must change depending on which direction
is commanded. Additionally, the addition of a nonzero intercept imposes a nonzero “minimum value”
to our motor output; in order to avoid rapidly-fluctuating motor outputs in the region near zero (where
the sign of the intercept will change), it is probably advisable to implement a “deadband” in which no
output is given.

Note also that, as described earlier, this characterization suggests that the typical method of
determining robot top speed in FRC by multiplying the theoretical top speed by a frictional “fudge
factor” is incorrect, and unlikely to yield an accurate value. A better approach, if a theoretical guess
at the value for the robot top speed is needed, would be to make a guess at the value of Vintercept;
from this, the theoretical value of kv, the current curve of the motor, and the internal resistance of the
battery, the top speed of the robot can be easily calculated (the details of this calculation are left as

4An even-more astute reader might note that our “sequential” linear regression approach is unable to detect an
“interaction” effect between velocity and acceleration; more-thorough investigation with an enlarged data set from
several tests does not reveal any such interaction.
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an exercise to the reader). Our analysis does suggest, however, that a multiplicative frictional fudge
factor is indeed appropriate when considering the output torque, rather than the speed, of a drive. We
hope that, if teams adopt this characterization methodology, reasonable guesses for these quantities
will become known as more data is obtained from actual robots.

The full form of equation 14 (including the acceleration term) becomes useful in more-nuanced
applications, such as motion-profile following, in which a meaningful acceleration setpoint can be
determined. For such applications, equation 14 provides an ideal feedforward formulation. A common
complaint around motion-profile following is that, when implementing feedforward of the form of
equation 7 (without Vintercept), it is difficult to obtain a set of feedforward gains (kv and ka) that works
well across a wide range of potential cruise velocities; our testing indicates that, with feedforward
implemented following the form of equation 14 with constants determined empirically as we have
described, open-loop following of linear trapezoidal-acceleration motion profiles can be made accurate
within ∼ 2% across a wide range of cruise speeds. This greatly reduces the amount of corrective work
that must be done by the feedback portion of the profile-follower.

A number of caveats apply to our suggested methodology, however. Firstly, it is absolutely crucial
that some step be taken to account for “voltage sag” due to the internal resistance of the battery
and resistance of the robot’s wiring. The Talon SRX motor controller offers a “closed-loop voltage
compensation” option that does a fine job of accomplishing this; battery voltage monitoring via the
PDP can also be used to apply the necessary correction.

By the same token, when empirically determining kv and ka, it is similarly important to measure
the actual voltage being applied to the motors, as due to “voltage sag” this can vary significantly from
the commanded voltage.

The two sides of a robot’s drive may not behave identically (this can easily be seen as a failure of
the robot to track straight when each side is given an identical voltage), due to differences in friction or
asymmetry in the operation of the motors (many brushed DC motors are designed to be more-efficient
in one direction than the other; there is, as far as we know, no consensus in the FRC community as
to whether this is true for CIMs). Ideally, one would like to somehow test each side separately, but as
it is not possible to physically decouple the left of a robot from the right of a robot (by any method
we know of), this is not possible - we have found that, in practice, it is enough to simply run the
calculations described above separately for each side of the drive, obtaining a separate set of constants
for each.

4.2 Quasi-Static Determination of kv

Determining the steady-state voltage-speed curve can be labor-intensive. Rather than running a large
number of constant-voltage trials, each to steady-state, one can take a “short-cut:” a quasi-static test
can be run, instead.

In the quasi-static test, the voltage given to the drive is slowly ramped upwards. If the ramping
rate is slow enough, the acceleration term in equation 14 is negligible, and can be ignored; the data
needed to calculate the voltage-speed curve can thus be obtained in a single test.

A few weeks after our initial steady-state tests, we ran a quasi-static test on our practice bot to
determine the accuracy of the method and an appropriate ramp rate. After some iteration, we found
that a ramp rate of 0.25 V s−1 worked very well and produced results near-identical to those of our
steady-state trials. It should be noted, however, that much more space is needed to reach full speed
when slowly ramping the voltage; we were unable to reach more than approximately half of max speed
before reaching the end of our carpet during the quasi-static test. However, given the utter lack of
nonlinearity in the steady-state voltage-speed curve apparent in our testing, this is likely not an issue.
The steady-state voltage-speed curve from the quasi-static test is shown below:
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Figure 4: The velocity versus voltage curve for a robot, measured via an on-ground quasi-static test.

4.3 Implementation with Existing FRC
Hardware/Libraries

Unfortunately, as of the time of writing this whitepaper, support for custom feedforward curves in
FRC is sparse. Most PID implementations offered to FRC teams offer feedforwards only of the form
kv ·velocity, which we have noted to be substantially inaccurate. Fortunately, additional support is on
the way, and there exist some “hacks” to allow implementation on some currently-available tools.

The WPILib PIDController object constrains feedforward to the form kv · velocity. While it is
messy/inconvenient to get around this for the PIDController object itself (we will not discuss potential
solutions here, though they are not too hard to think of), WPILib offers two convenience wrappers for
the class in the form of the PIDSubsystem and PIDCommand objects. Both include a “usePIDOut-
put()” method, which can be easily modified to do anything that the user desires with the output of
the feedback loop, including adding a custom feedforward to it.

The TalonSRX currently does not offer custom feedforward support in any of its closed-loop modes,
though the next version of the firmware is slated to include a “throttle bump” feature which will allow
for custom feedforward implementations. However, it is possible to ”hack” the motion-profile control
mode to support custom feedforward by adding the desired feedforward to the velocity setpoint, as it is
only used by the controller for the feedforward (and not for feedback). As the controller multiplies the
velocity setpoint by the user-specified feedforward gain, care must be taken to ensure that the values
are properly-scaled to result in the correct voltage after computation by the controller. One approach
to this is to set the Talon feedforward gain to kv and to divide both Vintercept and ka by kv prior to
adding them to the velocity setpoint; another is to set the Talon feedforward gain to 1023/Vmax (value
due to the Talon’s implicit units for the feedforward gain) and to replace the velocity setpoint with
the desired feedforward voltage.

The TalonSRX offers a “minimum output” feature in closed-loop control modes, ostensibly to serve
a similar purpose to Vintercept. This should not be used, as it does not actually add the “minimum
output” to all output voltages (but rather simply “promotes” voltages that are too small to the
minimum), and thus does not result in a correct voltage-speed curve.
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5 Conclusion

The behavior of drivetrains, and most likely other FRC mechanisms using brushed DC motors, can
be accurately characterized by three relatively easily-measured constants, as described by equation
14. The linearity of motor behavior even in the presence of frictional losses appears to be confirmed
by experiment. The authors hope that WPILib, and other FRC libraries, will add support for motor
control informed by this information in the future.

6 Data

Static voltage vs velocity data
Voltage vs acceleration data
Quasi-static voltage vs velocity data
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